I was just told to expect to be at the Mayo Clinic through Thurs. & maybe Friday. I’ll update you all if I have time with posts and my progress as it comes through. I have created a page called Mayo Clinic at the top.
Until then, I have some more interesting news to share.
I met with Dr Nahkle, the endocrinologists, today. He believes that I have symptoms to an Autonomic Dysfunction. There are a few types and it can get complicated Learn more about Autonomic Dysfunction on this site- http://tinyurl.com/4am78c. Basically, everything I have been describing- The head pain, fatigue, high heart rate, lightheadedness, pain in the back of the neck, lack of concentration- they all fall in this category. He is going to run a test tomorrow morning at his office and determine this from there. I won’t explain any prognosis at this time because the severity can vary based on the condition.
-Sabin
1 comment
Comments feed for this article
August 6, 2009 at 11:05 pm
Maurella
I am glad you will be going to Mayo Clinic. They are a renowned research facility and you will receive the best care. I looked up the link you sent and as well wanted you to mention whether you may be experiencing an arteriovenous malformation (AVM) below. I only mention this because of the information you have provided about symtoms and heredity. It is a lot of reading, but may be something to mention. I am proud of the grace and spirit you have been showing during this ordeal and will be thinking of you. You are moving forward and we are closer to figuring out this mystery.
I am with you,
Maurella…
What are arteriovenous malformations?
Arteriovenous malformations (AVMs) are defects of the circulatory system that are generally believed to arise during embryonic or fetal development or soon after birth. Arteriovenous malformations appear to be congenital (people are born with them). About 0.14 percent of the population have an AVM. Usually people who have AVMs do not experience symptoms until their 30s, but this varies. They are comprised of snarled tangles of arteries and veins. Arteries carry oxygen-rich blood away from the heart to the body’s cells; veins return oxygen-depleted blood to the lungs and heart. The presence of an AVM disrupts this vital cyclical process. Although AVMs can develop in many different sites, those located in the brain or spinal cord—the two parts of the central nervous system—can have especially widespread effects on the body.
AVMs of the brain or spinal cord (neurological AVMs) are believed to affect approximately 300,000 Americans. They occur in males and females of all racial or ethnic backgrounds at roughly equal rates.
What are the symptoms?
Most people with neurological AVMs experience few, if any, significant symptoms, and the malformations tend to be discovered only incidentally, usually during treatment for an unrelated disorder. But for about 12 percent of the affected population (about 36,000 of the estimated 300,000 Americans with AVMs), these abnormalities cause symptoms that vary greatly in severity. For a small fraction of the individuals within this group, such symptoms are severe enough to become debilitating or even life-threatening.
Seizures and headaches are the most generalized symptoms of AVMs, but no particular type of seizure or headache pattern has been identified. Seizures can be partial or total, involving a loss of control over movement, convulsions, or a change in a person’s level of consciousness. Headaches can vary greatly in frequency, duration, and intensity, sometimes becoming as severe as migraines. Sometimes a headache consistently affecting one side of the head may be closely linked to the site of an AVM. More frequently, however, the location of the pain is not specific to the lesion and may encompass most of the head.
AVMs also can cause a wide range of more specific neurological symptoms that vary from person to person, depending primarily upon the location of the AVM. Such symptoms may include muscle weakness or paralysis in one part of the body; a loss of coordination (ataxia) that can lead to such problems as gait disturbances; apraxia, or difficulties carrying out tasks that require planning; dizziness; visual disturbances such as a loss of part of the visual field; an inability to control eye movement; papilledema (swelling of a part of the optic nerve known as the optic disk); various problems using or understanding language (aphasia); abnormal sensations such as numbness, tingling, or spontaneous pain (paresthesia or dysesthesia); memory deficits; and mental confusion, hallucinations, or dementia. Researchers have recently uncovered evidence that AVMs may also cause subtle learning or behavioral disorders in some people during their childhood or adolescence, long before more obvious symptoms become evident.
One of the more distinctive signs indicating the presence of an AVM is an auditory phenomenon called a bruit, coined from the French word meaning noise. (A sign is a physical effect observable by a physician, but not by a patient.) Doctors use this term to describe the rhythmic, whooshing sound caused by excessively rapid blood flow through the arteries and veins of an AVM. The sound is similar to that made by a torrent of water rushing through a narrow pipe. A bruit can sometimes become a symptom—that is, an effect experienced by a patient—when it is especially severe. When audible to patients, the bruit may compromise hearing, disturb sleep, or cause significant psychological distress.
Symptoms caused by AVMs can appear at any age, but because these abnormalities tend to result from a slow buildup of neurological damage over time they are most often noticed when people are in their twenties, thirties, or forties. If AVMs do not become symptomatic by the time people reach their late forties or early fifties, they tend to remain stable and rarely produce symptoms.
Where do neurological AVMs tend to form?
AVMs can form virtually anywhere in the brain or spinal cord—wherever arteries and veins exist. Some are formed from blood vessels located in the dura mater or in the pia mater, the outermost and innermost, respectively, of the three membranes surrounding the brain and spinal cord. (The third membrane, called the arachnoid, lacks blood vessels.) AVMs affecting the spinal cord are of two types, AVMs of the dura mater, which affect the function of the spinal cord by transmitting excess pressure to the venous system of the spinal cord, and AVMs of the spinal cord itself, which affect the function of the spinal cord by hemorrhage, by reducing blood flow to the spinal cord, or by causing excess venous pressure.
Spinal AVMs frequently cause attacks of sudden, severe back pain, often concentrated at the roots of nerve fibers where they exit the vertebrae; the pain is similar to that caused by a slipped disk. These lesions also can cause sensory disturbances, muscle weakness, or paralysis in the parts of the body served by the spinal cord or the damaged nerve fibers. Spinal cord injury by the AVM by either of the mechanisms described above can lead to degeneration of the nerve fibers within the spinal cord below the level of the lesion, causing widespread paralysis in parts of the body controlled by those nerve fibers.
Dural and pial AVMs can appear anywhere on the surface of the brain. Those located on the surface of the cerebral hemispheres—the uppermost portions of the brain—exert pressure on the cerebral cortex, the brain’s “gray matter.” Depending on their location, these AVMs may damage portions of the cerebral cortex involved with thinking, speaking, understanding language, hearing, taste, touch, or initiating and controlling voluntary movements. AVMs located on the frontal lobe close to the optic nerve or on the occipital lobe, the rear portion of the cerebrum where images are processed, may cause a variety of visual disturbances.
AVMs also can form from blood vessels located deep inside the interior of the cerebrum. These AVMs may compromise the functions of three vital structures: the thalamus, which transmits nerve signals between the spinal cord and upper regions of the brain; the basal ganglia surrounding the thalamus, which coordinate complex movements; and the hippocampus, which plays a major role in memory.
AVMs can affect other parts of the brain besides the cerebrum. The hindbrain is formed from two major structures: the cerebellum, which is nestled under the rear portion of the cerebrum, and the brainstem, which serves as the bridge linking the upper portions of the brain with the spinal cord. These structures control finely coordinated movements, maintain balance, and regulate some functions of internal organs, including those of the heart and lungs. AVM damage to these parts of the hindbrain can result in dizziness, giddiness, vomiting, a loss of the ability to coordinate complex movements such as walking, or uncontrollable muscle tremors.
What causes vascular lesions?
Although the cause of these vascular anomalies of the central nervous system is not yet well understood, scientists believe that they most often result from mistakes that occur during embryonic or fetal development. These mistakes may be linked to genetic mutations in some cases. A few types of vascular malformations are known to be hereditary and thus are known to have a genetic basis. Some evidence also suggests that at least some of these lesions are acquired later in life as a result of injury to the central nervous system.
During fetal development, new blood vessels continuously form and then disappear as the human body changes and grows. These changes in the body’s vascular map continue after birth and are controlled by angiogenic factors, chemicals produced by the body that stimulate new blood vessel formation and growth. Researchers have recently identified changes in the chemical structures of various angiogenic factors in some people who have AVMs or other vascular abnormalities of the central nervous system. However, it is not yet clear how these chemical changes actually cause changes in blood vessel structure.
By studying patterns of familial occurrence, researchers have established that one type of cavernous malformation involving multiple lesion formation is caused by a genetic mutation in chromosome 7. This genetic mutation appears in many ethnic groups, but it is especially frequent in a large population of Hispanic Americans living in the Southwest; these individuals share a common ancestor in whom the genetic change occurred. Some other types of vascular defects of the central nervous system are part of larger medical syndromes known to be hereditary. They include hereditary hemorrhagic telangiectasia (also known as Osler-Weber-Rendu disease), Sturge-Weber syndrome, Klippel-Trenaunay syndrome, Parkes-Weber syndrome, and Wyburn-Mason syndrome.